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SUMMARY 
A non-adaptive method and a Lagrangian-Eulerian finite difference technique are used to analyse the 
dynamic response of liquid membranes to imposed pressure variations. The non-adaptive method employs 
a fixed grid and upwind differences for the convection terms, whereas the Lagrangian-Eulerian technique 
uses operator splitting and decomposes the mixed convection-diffusion system of equations into a sequence 
of convection and diffusion operators. The convection operator is solved exactly by means of the method of 
characteristics, and its results are interpolated onto the fixed (Eulerian) grid used to solve the diffusion 
operator. It is shown that although the method of characteristics eliminates the numerical diffusion 
associated with upwinding the convection terms in a fixed Eulerian grid, the Lagrangian-Eulerian method 
may yield overshoots and undershoots near steep flow gradients or when rapid pressure gradients 
are imposed, owing to the interpolation of the results of the convection operator onto the fixed grid used to 
solve the diffusion operator. This interpolation should be monotonic and positivity-preserving and should 
satisfy conservation of mass and linear momentum. It is also shown that both the non-adaptive and 
Lagrangian-Eulerian finite difference methods produce almost identical (within 1 %) results when 
liquid membranes are subjected to positive and negative step and ramp changes in the pressure coeffi- 
cient. However, because of their non-adaptive character, these techniques require an estimate of the (un- 
known) length of the membrane and do not use all the grid points in the calculations. The liquid membrane 
dynamic response is also analysed as a function of the Froude number, convergence parameter and nozzle 
exit angle for positive and negative step and ramp changes in the pressure coefficient. 

KEY WORDS Liquid membranes Lagrangian-Eulerian finite difference methods 

INTRODUCTION 

Vertical annular liquid jets or liquid curtains have applications as protection systems for inertial 
confinement laser fusion (ICF) reactors and as chemical reactors. Cylindrical chemical reactors 
can be used for stack emission scrubbing for pollution control, reaction and control of toxic 
wastes and scrubbing of radioactive and non-radioactive particulates and soluble materials. 

Ramos derived the equations governing the dynamics of axisymmetric liquid curtains and 
axisymmetric liquid membranes from Cauchy’s equations and obtained analytical solutions for 
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steady state, inviscid, long liquid curtains and liquid membranes as a function of the Froude and 
Weber numbers, nozzle exit angle and pressure difference across liquid curtains and liquid 
membranes. ’, ’ Ramos and Pitchumani 3 * 4  solved the equations governing the dynamics of liquid 
curtains and liquid membranes using a non-adaptive finite difference method and obtained 
numerical solutions as a function of the liquid curtain and liquid membrane parameters. 

In this paper the dynamics of liquid membranes is analysed by means of two non-adaptive 
finite difference methods. One of the methods is based on the direct discretization of the 
governing convection-diffusion equations, whereas the other method uses operator splitting to 
decompose the mixed convection-diffusion operators into a sequence of convection and diffusion 
operators. The convection operators are solved by means of the method of characteristics, i.e. 
a Lagrangian approach is employed, and their results are interpolated onto the fixed (Eulerian) 
grid used to solve the diffusion operators. The objective of this operator-splitting procedure is to 
minimize the numerical diffusion which arises when the convection operators are solved in a fixed 
grid, and since the method uses the method of characteristics and a fixed grid, it will be referred to 
as a characteristic-finite difference or Lagrangian-Eulerian procedure. 

The equations governing the dynamics of liquid membranes’ are presented in the second 
section, while the numerical methods used to solve the governing partial differential equations are 
presented in the third section. The fourth and fifth sections of this paper deal with the presenta- 
tion of results and conclusions respectively. 

PROBLEM FORMULATION 

Consider the axisymmetric, vertical liquid membrane shown in Figure 1 and assume that the 
liquid is isothermal and incompressible. If the friction forces on the gases surrounding ( r  > R) 

Y 
Figure 1. Schematic of a liquid membrane 
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and enclosed ( r c R )  by the liquid membrane are negligible, and if the liquid is inviscid, the 
equations governing the dynamics of axisymmetric, vertical liquid membranes can be written as ’ 
( t  > 0,o < z < L ( t ) )  

am a 
at a Z  
-+-(mu) = 0, 

a a 2aJ’ 
- (mu)  + - (muu) = mg + (- + ( p ,  - pi)) RR’ ,  
at aZ RR’ 

a a 2oJ’ 
at aZ RR‘ 
- (mu)  + - (muu) = - (- + ( p ,  - pi)) R ,  

aR aR 
u =-+ u - ,  

at aZ 

(3) 

(4) 

where m is the mass per unit length per radian of the liquid membrane, u and u are the axial and 
radial velocity components respectively, t is time, z is the axial co-ordinate, g is the gravitational 
acceleration, a is the surface tension, pi and pe are the pressures of the gases enclosed by and 
surrounding the liquid membrane respectively, R = R( t, z) is the instantaneous local radius of the 
liquid membrane, L is the liquid membrane convergence length (Figure l), the primes denote 
differentiation with respect to z and 

J = R / [  1 + (~)’]“’. (5 )  

Equations (1)-(3) represent mass and linear momentum conservation in the axial and radial 
directions respectively, while equation (4) corresponds to the kinematic condition at the liquid 
membrane. 

In order to understand the effects of different variables on the dynamic response of liquid 
membranes, it is necessary to introduce the following dimensionless quantities: 

where Ro,  uo and mo denote the liquid membrane radius, axial velocity and mass per unit length 
per radian at the nozzle exit, i.e. at z=O, respectively, Fr and We are the Froude and Weber 
numbers respectively, N is the convergence parameter and M* and N* are the non-dimensional 
linear momentum per unit length and per radian in the axial and radial directions respectively. 

Substitution of equations (6)-(8) into equations (1)-(4) yields the following system of equa- 
tions: 

au aF 
aT aZ - + + , = G ,  (9) 



862 

where 

J. I. RAMOS AND R. PITCHUMANI 

U = (m*, R : ,  M * ,  N*)T ,  

F = [M*, R : M * / m * ,  M*’/m*, M * N * / r n * l T ,  

G = LO, N * ,  Frm* - (C,,R*R*‘ - J * ’ ) / N , ( - J * ’ / R * ’  + C, ,R*) /NIT  

(10) 

(11) 

(12) 
and, the superscript T denotes transpose. 

Equation (9) is subject to the following boundary condition: 

U(t, z* = 0) = (1,1,1, (13) 
where 8, denotes the nozzle exit angle (Figure 1). The initial conditions will be specified in the 
section on the ‘Presentation of results’. 

Note that the right-hand-sides of equations (2) and (3) contain R“ = a 2 R / a z 2  and therefore 
equation (9) represents a mixed, non-linear convection-diffusion problem. Furthermore, while 
the pressure pe  of the gases surrounding the liquid membrane may be assumed constant, the 
pressure pi of the gases enclosed by the liquid membrane is determined, in the absence of mass 
leakage and mass dissolution by the volume enclosed by the membrane, as follows. If the gases 
enclosed by the membrane are assumed to be isothermal and ideal, then - 

Pi = PiRT, (14) 
where pi denotes the density of the gases enclosed by the membrane, i is specific gas constant and 
T is the temperature. In the absence of chemical reaction and mass dissolution and leakage, 
equation (14) can be integrated to yield 

pi = m i k T / (  R [IR’dz), 

where mi is the (constant) mass of the gases enclosed by the liquid membrane and L is the 
convergence length defined as the axial location at which R ( L ,  t)  = 0. 

Equations (2), (3) and (1 5) clearly indicate that equation (9) represents an integrodifferential 
convection-diffusion system. In this paper we shall be concerned with equation (9) and a specified 
pressure of the gases enclosed by the liquid membrane, i.e. pi, and therefore C,, will be specified as 
a function of time. This problem will be referred to as a direct problem since pi is specified as 
a function of time and is related to forced distributed parameter systems. The dependence of the 
pressure coefficient C,, on the non-dimensional time z, i.e. C,, = C,,(z), will be presented in the 
section on the ‘Presentation of results’. 

Direct problems can be realized in practice if the gases enclosed by the liquid membrane 
undergo an isothermal chemical reaction where the number of moles of the combustion products 
is different from that of the reactants. If the characteristic chemical reaction time is much shorter 
than the hydrodynamic timescales of the liquid membrane, it can be assumed that the reaction is 
instantaneous and C,, changes instantaneously, i.e. it suffers a jump. This jump may be positive 
or negative depending on whether the number of moles of the combustion products is larger or 
smaller than that of the reactants. 

The isothermal reactions of the gases enclosed by the liquid membrane may also occur in 
a finite time or may possess a cyclic behaviour characterized by periodic pressure variations. In 
this paper we will consider both instantaneous and smooth changes in the pressure coefficient 
corresponding to instantaneous and finite rate chemical reactions in the gases enclosed by the 
liquid curtain, whereas in Part I1 we will consider cyclic reactions which result in periodic 
pressure variations. 
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NUMERICAL METHODS 

Equation (9) with C,, = C,,(T) represents a forced system of mixed convection-diffusion equa- 
tions where the convergence length (Figure l) is a function of time. The non-dimensional 
convergence length is defined as L* = L / R ,  and corresponds to the non-dimensional axial 
distance at which R*(L*,  T)=O. 

Equation (9) was solved by means of the finite difference methods described in the next two 
subsections. 

Non-adaptive method 

Equation (9) can be written as 

au au 
a T  az* 9 

-+H-= G 

where H = aF/aU is a 4 x 4 Jacobian matrix whose eigenvalue 1 = M * / m *  has an algebraic 
multiplicity of four and a geometric multiplicity of one. Therefore a similarity transformation of 
H yields a Jordan canonical form which has 1 in the main diagonal and ones in the diagonal 
above the main diagonal. 

Equation (6) was solved in a fixed grid by means of an implicit method which uses one-point 
backward differences in time and upwinding/donor cell differences for the convection terms 
HaU/az*. Note that since m* and M *  are strictly positive, the eigenvalues of H are 1 > 0. 

The term G was discretized by means of central differences, and the finite difference form of 
equation (16) can be written as 

(17) 
where AT is the time step, I is the unit or identity matrix, the superscript n denotes the nth time 
level, i.e. T" = nAt, and 

-C;+~U;?; +(I  + ~ ; + 1 ) ~ ; + 1 = ~ ~ ~ 7 + 1  + u;, 

C = HAT/Az*. (18) 
The overall accuracy of equation (17) is  AT, Az*), and equation (17) represents a block 

bidiagonal system which can be solved by forward substitution in the following block iterative 
manner. The value of U"+' was guessed and used to evaluate GY". Equation (17) was then 
solved and the procedure was repeated until 

where N ,  denotes the number of grid points and the superscript k denotes the kth iteration within 
the time step. Note that 

(ui*"''-ui*k)2=(Ui*k+l_Ui*f)T(U*f+l_Ui*k ) -  

At the nozzle exit, i.e. i = 1, and at the convergence point, i.e. i = N,, the first- and second-order 
derivatives which appear in G (equation (16)) were evaluated as 

and 

i.e. forward and backward differences were used to evaluate R*' at the nozzle exit and at the 
convergence point respectively. 

R f ' = ( R  f - R f)/Az *, 

R N c - (  *'- R* N, - R *  N,-l)/AZ* 

R f " = ( R f  - R f )  /Az*', 

Rz: =( Rzc- RzC - 1)/Az *', 
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The main advantage of equation (17) is its simplicity. However, since the convection terms have 
been discretized by means of upwind differences, numerical diffusion is present in the calculations. 
Furthermore, since the solution of equation (17) was obtained in a fixed (non-adaptive) grid and 
the computations were performed in the interval 0 < z* < L*(T),  where L*(T)  is to be determined 
from the condition R *( L*, t )  = 0, i.e. L* is not known, a sufficient number of grid points had to 
be placed to accurately account for the time dependence of the convergence length. This resulted 
in some grid points which were never used in the calculations, i.e. those for which z* > L*( t ) .  

In general, L* does not coincide with a grid point. In the calculations presented in this paper, 
L* was determined by linear interpolation as follows. Let R,$c > 0 and R$c+l < 0, then 

The number of grid points used in the z*-direction was varied from 300 to 400 and the axial 
step size was calculated on the basis of the maximum convergence length L&,x as 

Az* = L & x / ( N p - l ) ,  

where L& is the steady state convergence length of the membrane corresponding to the largest 
value of the pressure coefficient C,, used in the calculations. 

The value of L2ax was determined by solving equation (17) for the largest pressure coefficient 
used in the calculations until the following criterion for steady state was reached: 

[ (ut"+;;uf" ) ] l J 2  < 10-4. 

For both the steady state and transient analysis the convergence length was defined as the axial 
distance at which 

I R * ~  6 10-4. (22) 

The above discussion clearly illustrates that since L* = L*(T),  the spatial step size Az* must 
first be determined from the steady solution of equation (17) corresponding to the largest value of 
the pressure coefficient C,,,. It also shows that for dynamic calculations in which L*(T)  < L&, 
the grid points located in the interval L * ( t )  < z* G Lzax are never used in the calculations. This 
'waste' of grid points is a consequence of the use of non-adaptive (fixed) grids for the solution of 
equation (9). Adaptive grids which do not 'waste' grid points will be presented in Part 11. 

The time step AT used in the calculations was equal to Az* for the steady state calculations 
which yield the value of L&. The transient calculations reported in the next section were 
performed with At=OOl. 

Extensive calculations were performed to analyse the effects of AT and Az* on the numerical 
results. These calculations revealed that the values of A t  =0.01 and Az* defined by equation (20) 
yield grid-independent results. 

Lagrangian- Eulerian method 

The non-adaptive finite difference method presented in the previous subsection introduces 
numerical diffusion because of the upwind discretization of the convection terms. In order to 
reduce the numerical diffusion errors, the mixed convection-diffusion system represented by 
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equation (9) was first written as 

au* au* 1 
- + u* - = F r  ---+ Cp, R*  R *' - J * ' ) ,  at aZ N m  

aR* aR* -+u*- = u * .  
a7 a Z  * 

The mixed convection-diffusion operators of equations (23)-(26) were split into the following 
sequence of operators: 

a v *  a v *  
L,: -+u*-=o at az* ' 

a v *  
a7 

LD: -= Q*, 

where 

V*=(m*, u*, u* ,  R*)', 

*-  -m* -, au * Fr--(C,,R*R*'- 1 +C,,R*), 0.1'. (30) 
Q -[ az* Nm* 

The convection operator of equation (27) was solved by means of the method of characteristics, 

V *  = D, (31) 
which yields 

where D is a constant vector, i.e. V *  is constant along the characteristic lines dz*/dz = u*. 

constant along the characterisitic lines. Therefore the slope of these lines is constant and 
Note that according to equation (27) and the second component of the vector V*, u* is 

ZE - z *" = AT, u *", (32) 
where AT, denotes the (non-dimensional) time step used to solve the convection operator and zE is 
the location of a point at 7C=7n+A7C which was at z*" at 7". 

The locations z,' of the method of characteristics do not in general coincide with those of the 
(fixed) grid points z r ,  i =  1,2, . . . , N,, used to solve equation (28). Therefore the solution V *  of 
the convection operator must be interpolated onto the Eulerian grid used to solve the operator 
&. In the calculations presented in this paper, cubic splines were used to interpolate the results of 
the convection operator onto the fixed Eulerian grid, and the operator LD was solved by means of 
one-point backward differences for the time derivatives and central differences for the spatial 
derivatives in an analogous manner to equation (17). 

Although the method of characteristics used to solve the convection operator eliminates the 
numerical diffusion which would be introduced if this operator were solved in a fixed grid, the 
results of the Lagrangian-Eulerian method presented in this section may exhibit numerical 
diffusion errors and/or oscillations owing to the interpolation of the results of the convection 
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operator onto the (fixed) Eulerian grid used to solve the operator LD. Furthermore, since the 
operator LD is solved in a non-adaptive grid, some grid points may not be used in the calculations 
as indicated in the previous subsection. 

In the calculations presented in this paper tC = tD = At/2, where A t  is the time step, i.e. 
A t = t " + l  -t", and A t D  is the time step used to solve the operator L,. The value of Az* was the 
same as that of the previous section. 

PRESENTATION OF RESULTS 

We consider liquid membranes in steady state with C,, = 0 and subject them at  P > 0' to the 
pressure coefficients shown in Figure 2, i.e. we study the dynamic response of liquid membranes 
to positive and negative step and ramp changes in the pressure coefficient. The response of liquid 
membranes to these changes in the pressure coefficient will help us to understand the membrane 
response to the pressure coefficients to be reported in Part 11. 

In Figure 2, 7 denotes the non-dimensional time measured from the instant at which the 
pressure change is introduced, i.e. from steady state, Cpna denotes the maximum/minimum 
amplitude of the pressure change and t ,  is the time during which C,, varies linearly with t. 

The calculations presented in this section were performed until t = 20; the values of the 
parameters used in the calculations are shown in Table I, and in all the figures the non- 
dimensional convergence length has been normalized with respect to the dimensionless conver- 
gence length corresponding to steady state and C,, = 0, i.e. with respect to Lz. 

In order to obtain a clear picture of the results presented in Figures 3-20, it is convenient to 
define the response and lag times. 

The response time is defined as the difference between the time at which the change in the 
pressure coefficient is imposed, i.e. t = 0, and the time at  which the convergence length changes by 
more than 3%. The response time is a direct measure of the inertia of the membrane. 

The lag time is defined as the difference between the time at which the C,, curve reaches its 
extremum and the time at which the convergence length curve reaches its corresponding 

I.." I 

I 
a. positive step t 

c :;:apF 1 -c 

Cpna 
.. . . . . . . . . . . 

'd t 
C. positive ramp d. negative ramp 

Figure 2. Types of variations of CPn used in the analysis 



DYNAMICS OF LIQUID MEMBRANES. I 867 

Table I. Values of the parameters used in the calculations 
~ 

Figure Fr N 6,  (deg) Cp*n 

3 Variable 15 0 0.5 
4 1 Variable 0 0 5  
5 1 15 Variable 0.1 
6 1 15 0 Variable 
7 Variable 15 0 - 0.5 
8 1 Variable 0 - 0.5 
9 1 15 Variable - 0 5  

10 1 15 0 Variable 
11 1 15 0 0.5 
12 Variable 15 0 0.5 
13 1 Variable 0 0 5  
14 1 15 Variable 0.1 
15 1 15 0 Variable 
16 1 15 0 - 0.5 
17 Variable 15 0 - 0.5 
18 1 Variable 0 - 0.5 
19 1 15 Variable -0.5 
20 1 15 0 Variable 

td 

0 
0 
0 
0 
0 
0 
0 
0 

Variable 
10 
10 
10 
10 
Variable 
10 
10 
10 
10 

Type of variation of Cp, 

Positive step 
Positive step 
Positive step 
Positive step 
Negative step 
Negative step 
Negative step 
Negative step 
Positive ramp 
Positive ramp 
Positive ramp 
Positive ramp 
Positive ramp 
Negative ramp 
Negative ramp 
Negative ramp 
Negative ramp 
Negative ramp 

extremum. The lag time is an indication of how closely the liquid membrane is able to follow the 
changes in the pressure coefficient. 

Membrane response to a positive step 

Figures 3-5 show the response of membranes to a fixed positive step change in C,,. In Figure 3 
the parameter that is varied is the Froude number. It is known from analytical studies' that the 
convergence length varies almost linearly with the Froude number when the other membrane 
parameters are fixed. This can be written mathematically as 

L* = k,(Cpn(z), N ,  o , )Fr ,  (33) 
where k,  is a constant of proportionality which depends on C,,, N and 0,. The steady state 
convergence length L2 corresponding to C,, = 0 can similarly be expressed as 

L z  = k2( C,, = 0, N ,  0,) Fr, (34) 
where k, is the proportionality constant corresponding to C,, = 0. From equations (33) and (34) 
it follows that 

L * / G  = k'(Cpn(Th N ,  oo)/k,(Cpn = 0, N ,  0 0 )  = k3(7, N ,  001, (35) 
where k, does not depend on Fr. Since N and 0, are fixed, k, is a function of z only. This is evident 
from Figure 3 where the responses of the membrane for all Froude numbers fall into one curve. 

The response of a membrane for different convergence parameters is shown in Figure 4. It may 
be recalled that the convergence parameter is a measure of the magnitude of inertial forces 
relative to the magnitude of surface tension (equation (7)). The smaller the value of N, the lesser is 
the inertia of the membrane and the quicker is the membrane response. Conversely, for high 
values of N the membrane response is sluggish. The membrane response and lag times increase 
with increasing N, and in the limit N + 00 (zero surface tension) the response and lag times tend 
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0 = Fr = 0.5 ; L' = 5.00 
0 = Fr = 1.0 ; L,, = 10.33 
A = Fr = 1.5 ; Ls, = 15.60 

*ss 
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1.0 

2.0 

0-I 

0.0 

Figure 3. Normalized dimensionless convergence length as a function of the Froude number for a positive step change 
in C,, 

- 

I I I 

0.0 5.0 10.0 15.0 2 

0 = N = 5 ; L* = 4.95 
0 = N = 15 ; L, = 10.33 
A = N = 25 ; L,, = 14.48 

8s 

1.0 

Figure 4. Normalized dimensionless convergence length as a function of the convergence parameter for a positive step 
change in C, 
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a =@,= -3O', L* = 273 ss 
0 = 0, = 0" Lf = 1033 
A = 0, = 30" ,  LSs = 2778 

00 
00 50 10 0 15 0 L 

7 

869 

Figure 5. Normalized dimensionless convergence length as a function of the nozzle exit angle for a positive step change 
in CPn 

to infinity. For example, in Figure 4 the response time for N = 25 is about 0.5 while the response 
times for N = 15 and 25 are about 0.9 and 1.2 respectively, and the lag times for N = 5, 15 and 25 
are approximately 40, 5.0 and 6.0 respectively. 

It can be seen from Figure 5 that as the nozzle exit angle Bo increases, the response of the 
membrane increases. For large values of the nozzle exit angle the pressure difference across the 
membrane acts over a greater surface area and hence the membrane response is faster. For 
membranes with small Bo the converse is true and the response is sluggish. 

The influence of the magnitude of the step variation on the pressure coefficient, namely Cpna, is 
presented in Figure 6. In this figure the membrane parameters N, Fr and Bo are kept constant. 
For large Cpna the driving force in the form of the pressure difference is high and so is the 
convergence length of the membrane. As Cpna decreases, the driving force drops and the 
convergence length decreases. 

Membrane response to a negative step 

In Figures 7-10 a negative step change in C,, is imposed on the liquid membrane and the 
influence of the membrane parameters on the response of the membrane is studied. Negative 
values of C,, indicate that the membrane is pressurized from outside, i.e. pc > pi. The behaviour 
of the membrane is similar to those described in Figures 3-6 with the following distinctions: 
(i) the convergence length decreases from its steady state value in response to the pressurization 
from outside the membrane; (ii) the response time and the lag time are much smaller than those 
for positive changes in Cpn. 
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, 

0.0 5.0 10.0 15.0 20.0 

Figure 6. Normalized dimensionless convergence length as a function of C,, for a positive step change in C, 

2.0 - 

< 1.0. 
* 

0 = Fr = 0.5 ; I&.= 5.00 
0 = Fr = 1.0 ; L = 10.33 
A = Fr = 1.5 ; Lss ss = 15.60 

5 

I I I 

10.0 15.0 1.0 

Figure 7. Normalized dimensionless convergence length as a function of the Froude number for a negative step change 
in C,, 
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2.0 

00 

0 = N = 
0 = N = 15 , L 
A = N = 25 ~ LTs = 1448 [Char dashes] 

5 , L& = 495 [Solid h e ]  
= 10 33 [Dashes] 

I I 1 

00 50 10 0 15 0 20 0 

Figure 8. Normalized dimensionless convergence length as a function of the convergence parameter for a negative step 
change in Cpn 

2.c 

v, * a  +, 1.0 
Yl 

0.0 

0 = e, = -30' L;, = 273 
0 = e, = o' L; = 1033 
A = 8, = 30' , L,, = 2778 

0 50 10 0 15 0 20 0 
7 

Figure 9. Normalized dimensionless convergence length as a function of the nozzle exit angle for a negative step change 
in C,, 
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20- 

UJ 
X V )  +, 10- 
2 

0 = Cpna =-0.25 ; L is = 10.33 
0 = Cpna =-0.50 ; i,, = 10.33 
A = Cpna =-0.95 ; L,, = 10.33 

00- 
0.0 5 0  10 0 15 0 
I I I I 

Figure 10. Normalized dimensionless convergence length as a function of C,,, for a negative step change in C,, 

Membrane response to a positive ramp 

Figure 11 shows the response of a membrane to positive ramp changes in the pressure 
coefficient. The parameter that is under consideration here is the rate of change of the pressure 
coefficient measured by t,. The response time increases and the lag time decreases as t, increases. 
This phenomenon can be explained as follows. A high value of t,  implies that the membrane is 
pressurized slowly and it takes a longer time for the pressure difference to overcome the inertia of 
the membrane; consequently, the response time is higher. It is also true that once the inertia is 
overcome, the membrane responds rapidly to changes in the pressure coefficient. Thus for large 
values oft, the relatively fast response of the membrane enables it to catch up with the change in 
Cpn, thereby reducing the lag time. In the limit t, + co the response time tends to infinity and the 
lag time tends to zero. 

Figures 12-15 illustrate the influence of positive ramp changes in the pressure cofficient on the 
membrane response. These figures indicate that the membrane response follows closely that 
observed for positive step chages in Cp,. 

Membrane response to a negative ramp 

The variations of the normalized convergence length in response to negative ramp changes in 
C,, are shown in Figures 16-20. The behaviour observed in Figures 11-15 for positive ramp 
changes is exhibited in these figures also. 

The results presented in Figures 3-20 were obtained by means of the two non-adaptive 
methods presented in the previous section. These methods yielded almost identical results; the 
differences were less than 1 % when zc = zD = At/2.  The Lagrangian-Eulerian method yielded 
some overshoots and undershoots near z = 0 + for the positive and negative step changes in the 
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Figure 13. Normalized dimensionless convergence length as a function of the convergence parameter for a positive ramp 
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pressure coefficient. These overshoots and undershoots were a consequence of the interpolation 
of the results of the convection operator onto the fixed Eulerian grid used to solve the operator L,  
and can be reduced, but not eliminated, by reducing the time step. 

The Lagrangian- Eulerian method did not preserve mass and linear momentum exactly. This 
was also attributed to the interpolation, which should be monotone and positivity-preserving and 
must satisfy the conservation principles of mass and linear momentum in the present application. 

Except in the cases where steep pressure changes were imposed, both the non-adaptive and 
Lagrangian-Eulerian finite difference methods presented in this paper produced almost identical 
(within 1 YO) numerical results. However, since these methods use fixed grids, the grid points 
located in the interval L * ( t )  d z *  d L:ax were never used in the calculations and the value of 
L;,, had to be determined before the transient calculations were performed. The adaptive finite 
difference methods presented in Part I1 do not use unnecessary grid points and do not require the 
determination of L:ax. 

CONCLUSIONS 

The time-dependent equations governing the dynamics of inviscid, isothermal, axisymmetric 
membranes have been solved numerically by means of non-adaptive and Lagrangian-Eulerian 
finite difference methods, and the membrane response was determined as a function of the Froude 
number, convergence parameter and nozzle exit angle for positive and negative step and ramp 
changes in the pressure coefficient. 

The results indicate that the response time, which is the time that the membrane takes to start 
responding noticeably to the changes in the pressure coefficient, is directly dependent on the 
inertia of the membrane. Response times are higher for small values of the convergence parameter 
and small values of B0.  For step and ramp changes in C,, the quantity L*/Ls?: is independent of 
the Froude number. This is because the convergence length is linearly proportional to the Froude 
number and hence the Froude number drops out of the ratio L*/Ls?:. The response of membranes 
to negative step and negative ramp changes are similar to the response to positive step and 
positive ramp changes respectively. However, the response is quicker for negative changes. In 
other words, the membrane response time decreases as the value of C,, decreases. 

The non-adaptive and Lagrangian-Eulerian finite difference methods yield almost identical 
(within 1 YO) results when the time steps used to solve the convection and diffusion operators are 
equal to half the time step used in the non-adaptive method. 

The non-adaptive method uses a fixed grid, upwind differences for the convection terms and 
a block iterative method for solving the governing mixed convection-diffusion system of 
equations. However, the upwinding of the convection terms introduces numerical diffusion 
errors. 

The Lagrangian-Eulerian technique uses operator splitting and decomposes the mixed con- 
vection-diffusion operator into a sequence of convection and diffusion problems. The convection 
operator is solved exactly by means of the method of characteristics and its results are inter- 
polated onto the fixed (Eulerian) grid used to solve the diffusion operator. Although the exact 
solution of the convection operator eliminates the numerical diffusion errors which would be 
produced if this operator were solved in a fixed grid, the interpolation yields overshoots and 
undershoots where steep flow gradients exist or when steep changes in the pressure coefficient are 
imposed. Such an interpolation should also preserve the monotonicity and positivity of the 
solution and ensure mass and linear momentum conservation. 

Since both the non-adaptive and Eulerian-Lagrangian finite difference procedures presented 
in this paper use fixed (non-adaptive) grids, it is first necessary to obtain an estimate of the 
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(unknown) length of the computational domain; this requires that the largest steady state 
convergence length be determined before the transient (dynamic) calculations are performed. 
Furthermore, since the transient convergence length is smaller than the maximum steady state 
convergence length, some grid points are never used in the calculations. This limitation is 
eliminated in Part I1 where solution-adaptive methods for the dynamics of liquid membranes are 
presented. 
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